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We discuss the dissipative diffusion-type term of the form m X V?>gm in the phenomenological Landau-
Lifshitz equation of ferromagnetic precession, which describes enhanced Gilbert damping of finite-momentum
spin waves. This term arises physically from itinerant-electron spin flows through a perturbed ferromagnetic
configuration and can be understood to originate in the ferromagnetic spin pumping in the continuum limit. We
develop a general phenomenology as well as provide microscopic theory for the Stoner and s-d models of
ferromagnetism, taking into account disorder and electron-electron scattering. The latter is manifested in our
problem through the Coulomb drag between the spin bands. The spin diffusion coefficient is identified with the
transverse spin conductivity, in analogy with the Einstein relation in the kinetic theory.
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I. INTRODUCTION

The problem of spin diffusion through conducting ferro-
magnetic medium attracted much attention over several
decades.'~® Semiclassical spin transport in the presence of a
weak magnetic field H can be captured by the conventional
diffusion equation (neglecting spin relaxation):

dS=H X S +DV?S, (1)

where D is the diffusion coefficient and H is the total effec-
tive field (omitting the gyromagnetic ratio), including the
applied and exchange contributions. The first term on the
right-hand side describes spin precession in the local field
while the second term stands for the ordinary diffusion of
spin density S. Equation (1) is, however, not applicable to
most realistic ferromagnets, whose spin interactions are char-
acterized by a large exchange energy A,.. In particular, when
A,. is comparable to the Fermi energy (which is the case in
transition metals), the spin precession in the exchange field
cannot be treated in the diffusive transport framework. Fur-
thermore, the time-dependent exchange field induces spin-
pumping currents’? inside the ferromagnet with spatially in-
homogeneous magnetization dynamics, which can con-
siderably modify the self-consistent magnetic equation of
motion. Here, we wish to elucidate the central role of such
self-consistent dissipative spin currents, which govern the
diffusionlike terms in the magnetic equation of motion in the
limit of strong ferromagnetic exchange correlations.

This paper is a follow up to our previous work,” providing
additional technical details and offering a broader phenom-
enological base. Apart from assuming strong exchange cor-
relation limit, our phenomenological approach and the main
results of the paper should not be sensitive to the micro-
scopic details and do not rely on the specific model of the
ferromagnetic material (such as the Stoner or an s-d model,
for example). The main goals of this paper are as follows: (i)
to put the results of Ref. 9 into a broader phenomenological
perspective, (ii) to explicitly show that two quite different
models—the spin-polarized itinerant-electron liquid (treated
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in Ref. 9) and the s-d model—lead to the same phenomenol-
ogy and can be treated in parallel, and (iii) to make direct
contact with the spin-pumping theory.”

To be specific, let us consider a continuous ferromagnetic
medium, with the effective field and spin density initially
pointing along the z axis. For weak excitations close to this
state, we may try expanding the ensuing transverse spin-

current density as>®
ji=-D'zxJS-D"38, 2)
which enters in the continuity equation:
IS=HXS- 2, dj;. (3)
i=x,y,z

In the limit of vanishing ferromagnetic correlations, we re-
cover Eq. (1) by setting D' —0 and D" — D in Eq. (2). Here-
after, we are focusing exclusively on the transverse spin dy-
namics and spin currents. The longitudinal spin flows are
conventionally described in terms of the ordinary diffusion
for spin-up and spin-down electrons with spin-dependent dif-
fusion coefficients and spin-flip scattering between the up-
and down-spin bands.'” Understanding the transverse spin
flows and dynamics requires more care, in part due to the
inherently quantum-mechanical behavior in the case of a
strong exchange field. When the magnetic excitation is
driven by the self-consistent transverse field h=z X H X z,
there should also be field-driven contributions to transverse
spin current (2), such as j; o d;h.

The problem in fact simplifies in the limit of strong ex-
change correlations. We will in the following employ a
mean-field view of ferromagnetism, where the collective
spin dynamics are driven by the exchange field, H
=-A,m(r,?) (setting fi=1 throughout), parametrized by the
local and instantaneous spin-density orientation, m=S/S,
which has to be solved for self-consistently. Since we are
only interested in the transverse spin dynamics, we set the
magnitude of the spin density S to be spatially and time
independent. In the limit of large A, the spin currents can
be parametrized by m(r,7). We can thus proceed phenom-
enologically and expand j; in spatial and time derivatives of
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m(r,7). For a static magnetic profile m(r), we have the fa-
miliar exchange spin flow

ji=—Am X gm, (4)
(where A is the material-dependent exchange-stiffness con-
stant) which is the only first-order form allowed by spin-
rotational and time-reversal symmetries. To avoid unneces-
sary complications, we will assume isotropic ferromagnet
throughout this paper. Dynamics allow for dissipative spin-
current contributions that break time-reversal symmetry:

j;’ =-—7m X &iﬁtm. (5)

Focusing on linear deviations of m from the equilibrium,
m©=z, we omit terms such as J;m X J,m.

According to the time-reversal property, spin-current den-
sity (4) corresponds to the D' term in Eq. (2) while spin-
current density (5) is analogous to the D" term although the
latter two are certainly not identical. In fact, we wish to
emphasize the striking difference between the diffusive pic-
ture for the spin currents [Eq. (2)] on one side and Egs. (4)
and (5) on the other side, where we expand spin currents
phenomenologically in terms of the time-dependent mag-
netic texture m(r,7). The latter approximation is specific to
the limit of strong exchange correlations, where the nondis-
sipative spin current [Eq. (4)] is determined by the instanta-
neous magnetic profile while the dissipative spin current [Eq.
(5)] can be interpreted as quasiparticle spin pumping by the
collective magnetic dynamics® rather than ordinary spin dif-
fusion. It is also instructive to draw analogy between coeffi-
cients A and 7 in Egs. (4) and (5), and the shear modulus and
shear viscosity, respectively, in elasticity theory.

In the next section, we develop further the phenomeno-
logical grounds for Egs. (4) and (5), before proceeding with
microscopic calculations for the dissipative coefficient 7 in
Secs. III and IV. In Sec. V, we discuss a spin-pumping inter-
pretation of dissipative spin current (5), before summarizing
our work in Sec. VL.

II. PHENOMENOLOGY
A. Landau-Lifshitz theory

The conventional starting point for studying ferromag-
netic precession is the nondissipative Landau-Lifshitz (LL)
equation'!

gmly =H" X m, (6)

where we define the effective field H* as the functional de-
rivative of the free energy:

H* = g,,F[mJ/S. (7)

In this Landau-Lifshitz phenomenology, which is applicable
well below the Curie temperature, only the position-
dependent direction of the magnetization is taken to be a
dynamic variable, parametrizing the Free energy F[m(r)].
The angular-momentum density S=Sm is assumed to be re-
lated to the magnetization by a constant conversion factor:
the effective gyromagnetic ratio. (Abusing terminology, we
say spin density synonymously with angular-momentum den-
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sity.) Since in the common transition-metal ferromagnets the
gyromagnetic ratio is negative, we wrote Eq. (7) with an
extra minus sign in comparison to the standard definition,
where m is taken to be the direction of the magnetization
rather than the spin density. The right-hand side of Eq. (6) is
the phenomenological reactive torque on the spatially re-
solved magnetic precession, which generalizes the simple
Larmor precession of Eq. (1). Note that the dissipation
power,

Pm(r,n)] = - Sf &*rH* - gm, (8)

clearly vanishes according to Eq. (6). We also easily verify
that the time reversal (under which r— —f, m—-m, and
H*— —-H") leaves Eq. (6) unchanged, as it should in the ab-
sence of dissipation. The only dissipative term we can write
in the quasistationary limit (i.e., up to the first order in d,),
assuming spatially uniform and isotropic ferromagnet, is the
so-called Gilbert damping:'?

dm| g=H"Xm-am X Jm, 9)

where « is a material-dependent dimensionless (Gilbert) con-
stant. A typical experimental value for « turns out to be often
of the order of 1072 in various metallic ferromagnets, which
means that it takes roughly 27/ a~ 10 precession cycles for
an out-of-equilibrium magnetization to relax to a static equi-
librium direction along H*. The Gilbert damping breaks
time-reversal symmetry and causes a finite dissipation
power:

Plm(r,1)]= an &*r(gm)>. (10)

As a side comment, we note that an alternative so-called
Landau-Lifshitz damping term m X H*Xm is mathemati-
cally identical to the Gilbert damping m X dm in Eq. (9), up
to an extra factor of (1+a?) on the left-hand side of the
equation.

The effective field H* is in practice dominated by the
applied magnetic field, magnetic crystal anisotropies, and
magnetostatic (dipole-dipole) interactions. In the presence of
spatial inhomogeneities, there is also exchange contribution
to the free energy, which to the leading (quadratic) order in
magnetic inhomogeneities can be written as'!

FXC=% f Arl(9m)? + (g,m)* + (9m)*].  (11)

The corresponding effective field is
H,=-(A/S)V’m, (12)
and the associated term in LL Eq. (6) is
dml. = (A/S)m X V’m. (13)

This equation can also be formally written as
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Satm|xc=_ 2 ‘9iji,v

i=X,y,2

ji=—Am X gm, (14)

which simply recovers our equilibrium spin current (4). We
emphasize that this spin current does not depend on magnetic
dynamics.

To summarize these preliminary considerations, the phe-
nomenological LL equation describes collective magnetic
precession driven by local effective fields as well as equilib-
rium spin currents. At this point, there is, however, a con-
spicuous asymmetry in the treatment of the dissipative cor-
rection to the LL equation, i.e., Gilbert damping (9), which
depends only on the local magnetic dynamics and thus does
not involve spin currents. To overcome this “discrepancy,”’
we expand the dissipative terms to second order in spatial
derivatives, generalizing Gilbert term to

dm| gy =— am X dm + (7/S)m X V29m, (15)

where 7 is a new phenomenological parameter, characteriz-
ing spin-wave damping. Assuming spatial-inversion symme-
try (under which d;,— —d; and m — m) prevents us from writ-
ing any phenomenological terms linear in spatial derivatives.
Recall also that we are always assuming small perturbations
with respect to a uniform equilibrium magnetization so that
all spatial and time derivatives must hit a single m (for ex-
ample, a dissipative term of the form X[dm-(m
X dm)]dm is disregarded since it is higher order in small
deviations of m). Additional quadratic terms would be al-
lowed phenomenologically if, e.g., we developed our linear-
ized theory with respect to an equilibrium magnetic texture,
such as a domain wall or magnetic spiral. Some of such
terms were discussed in Ref. 13, which is beyond our present
scope. Finally, we note that we wrote Eq. (15) with no direct
coupling to the effective field H*. We justify this by assum-
ing that the ferromagnetic correlations are characterized by a
very large energy scale A,. so that microscopic processes
responsible for dissipation are driven by the collective vari-
able m rather than directly by H*. In transition-metal ferro-
magnets, the internal exchange energy is of the order of eV
while the effective field H* corresponds to microwave fre-
quencies (i.e., at least three orders of magnitude smaller than
the exchange energy). This means that when we excite mag-
netic dynamics by an external field, the microscopic degrees
of freedom respond not to the small driving field but rather
the much larger self-consistent exchange field parametrized
by the time-dependent m. For the same reason, the spin cur-
rent in Eq. (14) depends only on the magnetic profile m(r),
irrespective of how it is created by applied fields.

The total dissipation power corresponding to Eq. (15)
now becomes

P[m(r,t)]:jd3r[a5(&,m)2+ 7(d,9;m)*]. (16)

Similarly to Eq. (14), we can also write the 7 term in Eq.
(15) in the form of the divergence of the spin-current density
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j? == md,(m X gm), (17)

reproducing Eq. (5). We thus identified two contributions to
the spin-current density: usual exchange spin current (14)
and dissipative spin current (17), which we will later inter-
pret as the dynamically driven spin pumping.”® Spin current
(17) can thus damp down spin-wave excitations even in the
absence of any spin-relaxation scattering.'* The latter is,
however, believed to be the culprit for a finite Gilbert damp-
ing a,'> which relaxes uniform magnetic precession by trans-
ferring its angular momentum to the atomic lattice.

In the presence of dissipative current (17), the relative
linewidth of the spin-wave resonance!® is proportional to «
+(7/8)g?, for the wave vector ¢. In the absence of the Gil-
bert damping «, thus, the spectral width of the spin-wave
excitation would vanish in the long-wavelength limit.'

B. Mermin ansatz for spin current

We now wish to establish a microscopic procedure for
evaluating the dissipative component of the spin current [Eq.
(17)]. Reference 9 adapted Mermin ansatz'” for this purpose,
which we will reproduce below. Microscopically, the spin-
current density j; is carried by conducting electrons respond-
ing to the mean-field exchange interaction,

H,.=-A.m(r,0) - 672, (18)

in the self-consistent single-electron Hamiltonian [which
could stem, e.g., either from the coupling to the localized d
electrons in the s—d model or the itinerant electron Stoner/
local-density approximation (LDA) exchange]. & is the vec-
tor of Pauli matrices, which defines the electron-spin opera-
tor.

Let us for the moment view exchange interaction (18) as
an external parametric driving field, not concerning with a
self-consistent determination of m(r,7). In particular, we
may allow for an instantaneous deviation of the electron-spin
density s from the exchange-field direction m. This will al-
low us for a trick to find the ensuing spin flows, which is
what we are after. The spin-density continuity equation cor-
responding to Hamiltonian (18) is

s =AMz X (sm—Ss) — Jj;. (19)

The equilibrium orientation of m is taken to be along the z
axis and we assume small-angle excitations, which do not
modulate the magnitude of the spin density, s=s|. s here is
the spin density of the conducting electrons, which in, e.g.,
the s—d model has to be distinguished from the tofal spin
density S that enters Eq. (3).

We next use the Mermin ansatz to relate the spin-current
density j; to the spin density s:

ji = O’LAXC&i(m - S/S) . (20)

where o | is the transverse spin conductivity, to be evaluated
later by the Kubo formula. Equation (20) is analogous to
Ohm’s law for electric current density, with the expression
on the right-hand side reminiscent of the gradient of the elec-
trochemical potential. The physical reasoning behind ansatz
(20) is simple: there should be no dissipative spin currents in

094415-3



TSERKOVNYAK, HANKIEWICZ, AND VIGNALE

the static configuration, which corresponds to s(r)=sm(r).
The advantage in writing the spin current in this form is that
o, will now have to be evaluated in the limit of (q, w) —0.
Combining Egs. (19) and (20) will then give us the spin
current to the linear order in q and w: exactly what we need
to relate it to Eq. (17) and read out 7. In fact, it is sufficient
to find A, (m—-s/s)=-z X dm from Eq. (19), which is valid
to the linear order in @ and zeroth order in q, before putting
it into Eq. (20) to finally find

Ji=—0,39(z X Jm). (21)
Comparing this with Eq. (17), we immediately identify z
with the transverse spin conductivity:

n=0,. (22)

Equation (22) can be interpreted as an analog of the Einstein
relation for transverse spin diffusion in strong ferromagnets.

C. Transverse spin conductivity

As is the case with the charge conductivity, it is conve-
nient to evaluate the transverse spin conductivity in the ve-
locity gauge. Namely, we eliminate the spin “potential” cor-
responding to small magnetization deviations dm=m-z in
Eq. (18), by the SU(2) gauge transformation

@(r,t) — exp{iAxcf dt'éom(r,t") - 6'/2] &’(r,t),
(23)

at the expense of introducing the SU(2) vector potential
R t
Aj=- Axcf dt' om(r,t") - 672, (24)

which enters the kinetic part of the single-particle Hamil-
tonian as

where p;=—id; and m" is the electron’s effective mass (as-
suming exchange-split parabolic bands). It is easy to verify
that the effective field driving the spin current in velocity
gauge (25), E;=—d,A,, is the same as the fictitious field E;
:—(9,-17 in original length gauge (18). One caveat is in order:
Egs. (23)—(25) are only valid for an Abelian exchange poten-
tial, which would be the case if only one vector component
of ém(r,r) was modulated (e.g., m, or &m,) in space and
time. Such scenario is sufficient for our purpose, in order to
establish the transverse spin conductivity entering Eq. (20).

Fourier transforming the electric field Ei in time, [dte'®,

the usual relationship is obtained: E(w)=iwA(w). We now
proceed to construct the semiclassical transport equation for
the spin current driven by a spatially homogeneous fictitious
field E;=Ti[E;6]=Adm, to deduce the long-wavelength
conductivity defined by Ohm’s law'8
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ji=o . E;. (26)

The semiclassical spin-current response, in the presence of
the exchange splitting A,., with disorder and electron-
electron scattering is given by!°
. . onE; [ 1 1

az‘.]t + AXCZ X .]1 - 4m* -]l( 'TTS + 7'ef> ’ (27)
where n is the total equilibrium (conducting) electron den-
sity. The second term on the right-hand side of Eq. (27)
describes spin-current relaxation due to disorder and
electron-electron scattering. Note that even in Galilean-
invariant systems, spin-independent Coulomb interaction be-
tween electrons causes relaxation of a homogeneous spin
current, in contrast to the ordinary current. Solving Eq. (27)

at low frequencies, we recover Eq. (26) for the current com-
ponent along E;, with®®

n T,

=, 28
4m* 1+ (1,A)° (28)

o

where the total transverse spin scattering rate is defined by

1 1 1 (29)

— =+ —.

LI i
In particular, in the limit of weak spin polarization and no
electron-electron interactions, 7, should reduce to the ordi-
nary momentum scattering time 7, and o to the quarter of
the Drude conductivity nr/m".

III. MICROSCOPIC CALCULATION
A. Spin-current autocorrelator

In order to substantiate the preceding phenomenology, we
need to establish the microscopic expressions for the in-
volved scattering times, 71* and 7°°. In the velocity gauge
discussed in the previous section, the transverse spin conduc-
tivity is given, according to the Kubo formula, by the spin-
current autocorrelation function:’

jm< < 2 &xlpxl > 2 &xlpxl>>
1 . ! ! ®

lim

O-L =—
Am*?V 0 15)

where the summation is over all electrons in volume V and

o

(AsB)),=—i J d1e @ O A®N,BO)])  (31)

0

represents the Fourier-transformed retarded (Kubo) linear-
response function for the expectation value of the observable

A under the action of a classical field that couples linearly to

the observable B. Jm in Eq. (30) is inserted out of conve-
nience since the linear in  response function is guaranteed
to be imaginary. (The zeroth order in w correlator includes
also the omitted “diamagnetic piece” of the spin current in
the velocity gauge.)

Assuming isotropic disorder (and for the moment no
electron-electron interactions), the ladder vertex corrections
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to the conductivity vanish and we only need to evaluate the
bubble diagram defined by the (single-particle) spin-
dependent Green’s functions

1

w—-p22m*+ p, *il27,

Gy (p.w) = (32)
where o=1,| (=) is the spin index along the z axis, u,
=u+0A, /2 is the spin-o electron Fermi energy, wu is the
chemical potential, and 7, is the spin-dependent disorder
scattering time. In the Born approximation for dilute white-
noise disorder, the scattering rate is proportional to the elec-
tron density of states, and we can write 7,=71v/v,, where 7
parametrizes the strength of the scattering potential, v, is the
spin-o band density of states, and v=(v;+v|)/2. A straight-
forward calculation then leads to’

Tt AL
in the strong exchange coupling limit, where
1 4 +
Y o B N (34)

ﬂis "3 nf(v{l + VII)
identifies the disorder contribution to effective transverse
spin scattering rate (29).

B. Spin-force autocorrelator

In the presence of electron-electron interactions, it is con-
venient to express spin-current autocorrelator (30) in terms
of the spin-force autocorrelator. To this end, we use the equa-
tion of motion for the operators defining Kubo formula (30)

to find
jm<<2 aA-xlFxl;z é-xlFxl>>
1 I
o, =- lim =

4m*2 A2V w0 ®

)

(35)

where F=p =—i[p,,H] is the force operator along the x
axis for the /th electron. Evaluated with respect to a uniform
magnetization, m=z, the force operator F,; consists of two
pieces: the disorder force and the electron-electron interac-
tion force. Evaluating correlator (35) in the clean limit to
second order in Coulomb interactions, one finds for the
transverse spin scattering rate:>°

ie =Y (p)m*agr{(ksT)*, (36)
i

where ap is the Bohr radius, 7 is temperature, kg is Boltz-
mann’s constant, r, is the dimensionless Wigner-Seitz radius,
and Y (p) is a dimensionless function of the spin polarization
p=(ny—ny)/n (ng being the spin-s electron density), which
was discussed in Refs. 5 and 9. Notice that scattering rate
(36) has the Landau quasiparticle scaling with temperature.
The finite-frequency modification of scattering rate (36) is,
furthermore, accomplished by replacing  (27mk,T)?
— 2mkT)*+ w?.

PHYSICAL REVIEW B 79, 094415 (2009)

C. Spin-density autocorrelator

It is also possible to calculate the transverse spin diffusion
directly, as a linear spin-density response to the transverse
magnetic field. We will carry that out in Sec. IV for two
popular mean-field models of ferromagnetism in metals: the
Stoner and the s—d models. In addition to offering an alter-
native approach to the problem, this derivation provides a
justification for the preceding heuristic utilization of the Mer-
min ansatz.

Starting with the mean-field Hamiltonian for itinerant
electrons
P2
2m*

H=-"—+U(r) - u—A 6.2, (37)

and directly solving for the self-consistent spin-density re-
sponse to a small driving magnetic field, we will derive in
the next section the following general relation:

AL Omy,(q,
= S5 g 210 0) (38)

q- o—0 (O]

valid at long wavelengths, ¢g—0. The axially symmetric
(Kubo) spin-response function is defined by

%o (@.0) =~ ) Oy (39

where s.=s,*is, is the transverse spin density of itinerant
electrons. The disorder potential U(r) entering Eq. (37) is, as
before, taken to obey the Gaussian white-noise correlations:

1

2mTvT

UrU))= or-r'), (40)

where v=(v;+v|)/2 is the spin-averaged density of states at
the Fermi level and 7 is the characteristic scattering time.

Writing the spin density s(r)=Tr[ 6p(r)]/2 in terms of the
electron-density matrix paﬁ(r)=\lf;(r)‘1’a(r) in spin space,
we proceed to evaluate y,_ in the standard imaginary-time
formalism. At temperature 7, we have

- . r , : .
X+—(q7lQn) == E/ 2 gl(p+q7p +q;lwm+lQn)
pp’.m

where

1 /T ) o
Golp.p'si0,) == f drd’r’ f dre PR i, T
0

X(W o (r, )W (r',0)) (42)

is the finite-temperature single-particle Matsubara Green’s
function. ), =2n7T is the bosonic and w,,=(2m+1)7T fer-
mionic Matsubara frequencies, where n and m are integer
indices.

The disorder-averaged Green’s function is given by
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OO

L oi(wm +Q0)

FIG. 1. In this RPA summation for the magnon propagator [Eq. (64)], the magnon self-energy is provided by the s-electron spin-response
bubble [Eq. (41)]. Straight double lines denote disorder-averaged s-electron Green’s functions and dashed lines describe vertex ladder
corrections. Each bubble contains ladder corrections to the vertex function. Wavy lines are the d-electron-spin propagators.

Spp’

(Go(p.p'siw,)) = - , (43)

[w,, — &p,+ i sign(w,,)/27,

where sp(,zpz/ 2m*—u—0A. /2. The analytic continuation
of the Matsubara Green’s functions into the retarded (ad-
vanced) Green’s functions is accomplished by replacing
iw,,— o *i0* and sign(w,,) — =. According to our conven-
tion (40), 7,=7v/v,. Taking into account the vertex ladder
corrections (as shown in Fig. 1), we obtain for the disorder-
averaged response function:

X.-(q.,i€2,) =
v m 1 —(§/V)Ep gl(p"—q’lwnz'i-IQn)gT(p’lwm),

(44)

where é=1/2mv7, and by the Green’s functions with a single
wave-vector argument here, we understand disorder-
averaged propagator (43). Inserting Eq. (43) into Eq. (44)
and performing an analytic continuation onto the real fre-
quencies, it is straightforward to calculate y,_(q,w). Setting
the temperature to zero and taking the w— 0 limit, we find

~o o~ —i YRA—)’(VAA
Imx.(q,0) = a1 = &N -

where ¥*"(q)=[dpG|(p)G{(p-q) and [dp= [d’p/(2m)® in
three dimensions. All energies entering these Green’s func-
tions are set at the Fermi level. To the lowest order in 1/7A,
we now obtain

(45)

Imy,_(q,w) = %T [ f dpA (p)A;(p-q)

+4&Im f dpG’(p - @A (p) f dpG’(p - q)ReG'(p) |,
(46)

where A,=-23mGX is the spectral function.

The second term in Eq. (46) is the vertex ladder correc-
tion, which is necessary for Eq. (46) to give a meaningful
result. In particular, the vertex correction cancels the spuri-
ous g=0 contribution of the first term, which would give «
~1/7A,.. Finally, in the limit of ¢<7A,./vy, we arrive at

Mty
3m*7'(1/$1 + vIl)A

Img. (q.0) = Y

Xc

Using Eq. (38), this finally gives

_ Mty
M= % 1, -IhA2°
3mir(v; + v )AL

(48)

which agrees with Egs. (22), (28), and (34) in the relevant
here limit of 71' <A,

IV. MEAN-FIELD FERROMAGNETISM
A. Time-dependent LDA

In a spin-density-functional theory (s-DFT),>2° the many-
body problem of itinerant ferromagnetism is reduced to the
single-electron Hamiltonian

2
AG) = 2”— +U) = - [Aem(r,) + 0z + h(r,0)] - 67/2.
m

(49)

wy<<A,. is the ferromagnetic Larmor precession frequency
in the presence of a uniform magnetic field applied along the
z axis. A, ,m(r,7) is the self-consistent exchange field, such
that Hamiltonian (49) produces the correct spin-density re-
sponse. Since we are ultimately interested in the equation of
motion for the collective ferromagnetic dynamics, the spin-
density response is all that is needed. In the LDA of the
s-DFT, the exchange field follows the local and instanta-
neous magnetization direction m(r,?). h(r,z) is the external
rf driving field, which we will treat perturbatively.

The time-dependent portion of the Hamiltonian is thus
given by

H (1) =- f &r[A,.om(r,1) + h(r,1)]- 672. (50)

Since Sm=4s/S (where & denotes small deviations from
equilibrium), we have for the transverse spin component s,
=S5, +isy

XC

S

s,(q,0) = Y+—(q’w)|:h+(q’ w) + si(q,0) |. (51)

The self-consistent response function to the rf field,
X+—=5./h,, is thus
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AXC
Xil(q,0) =¥, (q,0) - - (52)

In the LDA approximation, the problem thus trivially reduces
to calculating the spin-spin response function for a noninter-
acting Hamiltonian with a fixed exchange field.

Let us in general write

3 S
- [wr(q’ (1)) + AXC - (1)] - ia(q’ w)w

X+-(q, ) > (53)

in terms of functions w, and « that are to be determined. The
self-consistent response function then becomes

S

wr(q$w) - w] - la(q7w)w .

X+-(q.0) = [ (54)
At q=0, obviously w(w)= w, and a(w)=0. This follows in
general from the spin conservation in the presence of Cou-
lomb interactions and arbitrary spin-independent potential
U(r). In this paper, we are most interested in the g-dependent
damping function a(q,®), which can be identified by a mi-
croscopic evaluation of y,_(q,w). In the limit of strong ex-
change correlations, A,.> w,, we immediately obtain from
Eq. (53):

A2 ImE.(q.
g, 0 — 0) ~ ¢ iy 21X )
w—0 w

(55)

In inversion-symmetric systems, the leading in ¢ spin-wave
contribution to Gilbert damping is a(q,w— 0)=(7%/5)q>, so
that self-consistent response function (54) corresponds to the
dissipative term

atm|diss = (W/S)m X Vzﬂzm (56)

in Landau-Lifshitz Eq. (6) of motion for the magnetic spin
direction m(r,?). This is the desirable result and, according
to Eq. (55), the microscopic expression for 7 gives Eq. (38)
of the previous section. In the next section, we will demon-
strate that Eq. (55) is generic to mean-field treatment of con-
ducting ferromagnets.

B. s—d model in random-phase approximation

It is also instructive to pursue a more basic description
starting with a ferromagnetic lattice of localized d electron
exchange coupled to itinerant s electrons. The corresponding
Hamiltonian is

I:I(f)=1:10—2 [JS; s(r,1) +S;-h(r,1], (57)

where S; are local d spins and I:IO consists of the decoupled
Hamiltonian for itinerant electrons, dc Zeeman Hamiltonian
of the d electrons, as well as the d—d exchange and possible
dipolar interactions. h is the applied rf field, which we take
for simplicity to couple to the localized spin only. As long as
the average exchange field experienced by the s electrons is
sufficiently strong and the magnetization is dominated by the
d electrons, we can disregard their direct rf coupling for our
purpose. If also the Fermi wavelength is long in comparison
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to the d lattice spacing, we will treat the electronic band
structure in the effective-mass approximation, and also
coarse grain the local spins: 2,8;— [d’rS(r) and S,
— (V/N)S(r), where N/V is the density of d sites.

Let us compute the spin-density response function for the
d lattice:

Xo_(r,r'sn)=— %((&r(r,t) ;S_(r',0))). (58)

For this purpose, it is convenient to define bosonic magnon
operators:

1 .
e PLS. | 59
@VE i (59)

a. =
\

P

which obey the canonical commutation relations, [ap,al,]
op’» Close to the fully magnetized ground state. To be spe-
cific, let us take the Heisenberg model for exchange coupling
so that in the ground state, S;.=D, the d-orbital spin [assum-
ing the applied dc magnetic field to point along the —z direc-
tion, as in Eq. (49)]. The d-orbital Hamiltonian for magnon
excitations close to the ground state can thus be written as

I:IO => spa;‘,ap. (60)
P

In terms of the magnon operators, we, furthermore, rewrite
the s—d exchange interaction as

A DN i
== T\ 52 [afs.(p) + (- D]~ /2 S5,
p i

(61)
where s.(p)=/d’re”Ts. (r) is the Fourier-transformed
transverse s-electron-spin density. Approximating S;, =D,

we can combine the second term in Eq. (61) with H, for the
s electrons, resulting in the longitudinal mean-field exchange
field A.=JS, where S=DN/V is the averaged
d-electron-spin density. The spin-flop term of Eq. (61) can be
expanded in terms of the electronic field operators ¥, as

! J DN T ’ ’
== 3\ 7 Zq¥ie)v e +p)
PP

+a,¥i(p") ¥ (p’ - p)]. (62)

In the imaginary-time (Matsubara) formalism, response func-
tion (58) can be written as

X+—(q7 T) == Sf(qv T) > (63)
in terms of the magnon Green’s function
F(q,7) == Tag(1ai(0)), (64)

using definition (59). Here, 7 is the time-ordering symbol.
For noninteracting Hamiltonian (60),

Folq,iQd,) = , 65
0(q,i€2,) i, &g (65)
where ]-'(q,iQn)=f(1)/Td7'e"QnT.7:(q, 7) and Q,=2n7T, as pre-

viously, is the bosonic Matsubara frequency. In order to cal-
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culate F in the presence of s—d exchange (62), we will sum
up the bubble diagrams [which constitute a random-phase
approximation (RPA)] shown in Fig. 1. It is easy to recog-
nize that each bubble (which is the magnon self-energy in
this approximation) is just the itinerant-electron spin-density
response function that was already calculated in Sec. III C.
Summing up the diagrams in Fig. 1, we thus obtain

F(q.i9,) = ' (q.i0,) - 3(q.i,), (66)
where the self-energy (the s-electron spin-response function)
2(q.i,) = - I°S¥,-(q.iQ,) (67)

follows from Eq. (44). Combining Egs. (63), (66), and (67),
we finally obtain (after analytic continuation onto real fre-
quencies)

w) = ‘“—‘S_—“’ — PR (q.o). (68)

X (q,
Equation (68) is actually quite trivial: it can be also obtained
by treating the d-orbital magnetization dynamics and the as-
sociated s—d torque in a mean-field approximation analo-
gous to the preceding discussion of the Stoner model. Invert-
ing Eq. (68), we can write it in form (54), after identifying

0,(q,0) = g4~ SI*ReX,(q,0), (69)

and

a(q,0) = SJ? (70)

jm; +—(q7 U))
T e
which is, in fact, exactly the same as Eq. (55) in the low-
frequency limit, using A,.=JS. We should emphasize that,
although x,_ is defined in this section for a different physical
system than x,_ in Sec. IV A (and thus, not surprisingly, is
found to be somewhat different), the itinerant-electron re-
sponse Y,_ is the same throughout the paper. The reason why
the ¢> magnetic damping a(q, ) is identified in terms of the
same quantity y,_ in the two different models of ferromag-
netism can be traced to our phenomenological identification
of this damping in terms of the conducting-electron trans-
verse conductivity [Eq. (22)]. The latter is governed by the
mean-field structure of the exchange field, irrespective of the
microscopic origin of the ferromagnetic order.

Let us also note in the passing that, unlike the idealized
Stoner model considered in the previous section, the s—d
magnetic damping may have a finite g=0 value even in the
absence of any additional spin-dependent terms in the
Hamiltonian. When the gyromagnetic ratios of the two elec-
tron species differ (ultimately stemming from some form of
spin-orbit interaction), the total spin no longer precesses un-
damped in the uniform field, and the uniform transverse spin
component can decohere in the presence of ordinary scalar
disorder. Since Eq. (70) corresponds to the magnetic field
coupled to the d electrons only, we implicitly set the s elec-
tron g factor to zero.

V. SPIN-PUMPING INTERPRETATION

It is illuminating to interpret the key result of this paper
for the transverse spin diffusion of form (17) in terms of the
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b=L+d

[

-_——==

L d

- - - -

X

FIG. 2. A schematic view of the superlattice considered in the
text: an F|N bilayer is repeated along the x axis, with either ferro-
magnetic or antiferromagnetic alignment of the consecutive mag-
netic layers. The system is translationally invariant along the two
remaining axes.

spin pumping associated with a nonuniform magnetic dy-
namics in ferromagnetic bulk.® The ferromagnetic spin
pumping was originally proposed in the context of magnetic
multilayers with sharp normal-metal |ferromagnetic inter-
faces. This paper shows that analogous processes also take
place in the continuous ferromagnetic medium.

To illustrate the direct connection between the transverse
spin diffusion and the spin pumping, we consider a periodic
stack of alternating F and N layers forming a two-component
superlattice in the x direction.® We treat the model depicted
in Fig. 2, in which an F|N bilayer forms the unit cell with
thickness b=L+d, where the normal-metal spacer of width L
separates the magnetic films of thickness

d> N =vp/TA,.. (71)

The latter approximation allows us to neglect the transverse
spin-current coherence between two interfaces of the same
magnetic layer.® Translational invariance is assumed for sim-
plicity in the lateral directions. We consider here collective
spin-wave excitations, taking both the static and dynamic
exchange couplings into account.”

The static (Ruderman-Kittel-Kasuya-Yosida-type) ex-
change interaction between neighboring ferromagnetic layers
is mediated by the dissipationless spin currents flowing
through the normal-metal spacer.?! We will parametrize the
strength of this coupling by the corresponding precession
frequency w,. of a single ferromagnetic film that is exchange
coupled to a pinned film. In the presence of the magnetic
dynamics, additional dissipative spin currents set in. Their
origin lies in the spin pumping by the individual magnetic
layers into the adjacent normal spacers, which at low fre-
quencies is given by® I?"™P=(#/ 4W)§L1‘Fm>< Jm. ng‘F is the
dimensionless spin-mixing conductance per unit area of the
F|N interface (which is assumed to be real valued, for sim-
plicity). This interfacial spin pumping induces nonlocal spin
transfer in magnetoelectronic circuits, which can in general
be treated as a source term entering spin transport equations
in normal and magnetic layers. In a collinear superlattice of
Fig. 2, the problem simplifies considerably because the spin-
current vector I®*™Pocm X gm is transverse with respect to
the magnetic alignment (in both ferromagnetic and antiferro-
magnetic cases), within the linear-response regime. This
means that the spin current pumped by one ferromagnetic
layer is either scattered back by the normal spacer and reab-
sorbed, or transmitted and absorbed by a neighboring layer,
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with no possibility to reach more distant neighbors, subject
to condition (71). Spin relaxation in normal spacers would
only cause an overall increase in the effective Gilbert damp-
ing parameter of a uniform magnetic precession, and will
thus be omitted since our primary interest here is nonlocal
damping effects. The problem of dynamic exchange between
two adjacent ferromagnetic layers thus effectively reduces to
the analogous effect in magnetic bilayers, which was studied
in detail in Ref. 7. In particular, the net spin pumping
through a given normal spacer is om; X dm;—m, X dm,,
which reflects the dynamic spin injection in the opposite di-
rections by the adjacent magnetic layers m; and m,. Notice
that the total pumping vanishes in the case of a perfectly
synchronous precession, m;(z)=m,(z).

Let us now put the static and dynamic exchange interac-
tions into the equation of motion for small-angle spin dy-
namics of a multilayer with respect to an all-parallel configu-
ration, w;(r)=m;(r)-z. For long-wavelength excitations, it
may be approximated as a continuous function u(x,) of the
coordinate x normal to the interfaces. For the uniaxial effec-
tive field H*=-wyz, the spin-wave dynamics obey the differ-
ential equation

o = [wgut — w, H2Fu + adu — @' b*Fou] Xz, (72)

where we made the following definitions: w,.=J,./Sd and
o :%eAHMF/ 4mSd. Here, J,. is the exchange coupling be-
tween two consecutive magnetic layers and

1/ Alr =218 + €’Lpl T (73)

is the effective pumping resistance of the spacer. The first
term on the right-hand side of Eq. (73) parametrizes the
pumping strength of the individual interfaces, as was dis-
cussed above, and the second term is the ordinary Ohmic
resistance of the normal spacer (neglecting any spin relax-
ation), which backscatters the pumped currents and thus sup-
presses the dynamic exchange. The second spatial deriva-
tives in Eq. (72) reflect simply the difference of the static and
dynamic exchange spin currents through two consecutive
normal spacers (which themselves require a finite misalign-
ment of the adjacent magnetic layers) in the continuum limit.
The static Heisenberg coupling can be interpreted as the su-
perlattice equivalent of the bulk exchange-stiffness param-
eter A of Eq. (I11), which for the superlattice becomes A
=J,.b. Both w,. and «' are sensitive to the normal-interlayer
thickness L, vanishing in the limit L— . It follows from Eq.
(72) that the small-momentum, g<<b~!, spin-wave excita-
tions of the superlattice, propagating perpendicular to the
interfaces, uexp[i(gx— wt)], obey the dispersion relation

wp + (b q)zwxc

wlq) = 1+ila+(bg)*a'] (74)
When ¢ — 0, (g) reduces to the Larmor frequency w, of the
individual magnetic layers because the static and dynamic
exchange couplings vanish when the consecutive magnetic
layers move coherently in phase. Equation (74) holds up to
momenta comparable to b~!, when bg has to be replaced by
2 sin(bgq/2).
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The matters are quite different for an antiferromagneti-
cally aligned superlattice, which is the ground state when, for
example, J,.<0 and H*=0. In this case, we have a more
complex dispersion:

= \(bg)’(1+ @) - 4a’ + i[2a+ (bg)a’]
1+ a? +4aa’ +(bg)*a'?

w(Q) == Wy

E}

(75)

where plus and minus signs refer, respectively, to the modes
with antisymmetric and symmetric dynamics in the adjacent
layers for overdamped motion, and to the right- and left-
propagating modes when the real part of w(g) is significant.
Note that now w,.<0, so that Jmw>0, as required for a
stable configuration. In the absence of bulk magnetization
damping, a=0, Eq. (75) reduces to

* (bq) 0y,

1= i(bg)a’ 70

w(g) =
with linear dispersion and damping at small g. Equations
(75) and (76) can also be generalized to large momenta by
replacing bg with 2 sin(bg/2). Notice that in Egs. (72), (74),
and (76), the dynamic coupling modifies the damping simi-
larly to the way the static coupling affects the excitation
frequency of the magnetic superlattice. Crystal and shape
anisotropies on top of the simple effective fields assumed
above might become important in real structures, and their
inclusion is straightforward.

Let us now compare the damping (bg)?>a’ in Eq. (74) with
a(g)=(a,/S)g* corresponding to Eq. (33), which is the
analogous quantity for the bulk. Keeping only the mixing
conductance contribution to Eq. (73) and approximating®
glh= p%/ 2 in terms of the characteristic Fermi momentum
pr in the normal metal, we have for the g-dependent part of
the damping:

(bINR)?
S—;qz, (77)

alg) = (bg)*a’ ~
up to a numerical constant. At the same time, the bulk a(g),
corresponding to Eq. (33), can be written as

()\sc/)\F)zqz

S\ ' 78)

alq) ~
which establishes a loose formal correspondence between the
two results. Here, A=v 7 is the mean-free path, A\ the Fermi
wavelength, and the ferromagnetic coherence length A\, was
defined in Eq. (71).

Comparing Eqgs. (77) and (78), we interpret the length
scale b+ A\ to describe the longest distance over which fer-
romagnetic regions can communicate via spin transfer. The
length scale d« N characterizes momentum scattering rel-
evant for spin transfer, which in the case of the superlattice
with sharp interfaces corresponds to the magnetic film width
d: Approximating g''~ p%/ 27 above, we effectively took
the normal spacers to be ballistic and, because of Eq. (71),
the spin transfer does not penetrate deep into the ferromag-
netic layers, making possible disorder scattering there irrel-
evant for our problem.
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VI. DISCUSSION AND OUTLOOK

Estimating the numerical value of the dimensionless ¢?
damping, according to Eq. (28),

o.q (Mﬂ%)z
S Prlq

TLAXC
1+ (TLAXC)Z '

alq) = (79)

we can see that it will most likely be at most comparable or
smaller than the typical g=0 Gilbert damping a~ 1072, in
metallic ferromagnets. Damping (79) may, however, become
dominant in weak ferromagnets, such as diluted magnetic
semiconductors. We are not aware of systematic experimen-
tal investigations of the ¢g> damping in metallic ferromagnets.
q* scaling of relative linewidth was reported in Ref. 22 for
the iron-rich amorphous Feq,_,Ni, Zr,, alloys. However, we
are not certain whether the strong damping observed there
can be attributed to the mechanism discussed in our paper.
Another intriguing context where the physics discussed
here can play out to be important is the current-driven non-
linear ferromagnetic dynamics in mesoscopic as well as bulk
magnetic systems. The ¢> magnetic damping described by
Eq. (15) can be physically thought of the viscouslike spin
transfer between magnetic regions precessing slightly out of
phase. The obvious consequence of this is the enhanced
damping of the inhomogeneous dynamics and thus the syn-
chronization of collective magnetic precession. This phe-
nomenon was predicted in Ref. 7 and unambiguously ob-
served in Ref. 23, in the case of the coupled dynamics of a
magnetic bilayer: when the two layers are tuned to similar
resonance conditions, only the symmetric mode correspond-
ing to the synchronized dynamics produces a strong response
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while the antisymmetric mode is strongly suppressed. It is
thus natural to suggest that the g> viscous magnetic damping
in the continuum limit may have far-reaching consequences
for the current-driven nonlinear power spectrum as that mea-
sured in Ref. 24. This needs a further investigation.

The role of electron-electron interactions was manifested
in our theory through the spin Coulomb drag, which en-
hances the effective transverse spin scattering rate [Eq. (29)].
This becomes particularly important, in comparison to the
disorder contribution to the transverse spin scattering, in the
limit of weak magnetic polarization.”

We finally emphasize that the study in this paper was
limited exclusively to weak linearized perturbations of the
magnetic order with respect to a uniform equilibrium state.
When the equilibrium or out-of-equilibrium magnetic state is
macroscopically nonuniform, as is the case with, e.g., the
magnetic spin spirals, domain walls, vortices, and other to-
pological states, the longitudinal as well as transverse spin
currents become relevant for the magnetic dynamics. The
longitudinal spin currents lead to additional contributions to
the spin-transfer torques, modifying the magnetic equation of
motion. Such spin torques leading to the dissipative ¢g> damp-
ing terms were discussed in Ref. 13. These latter contribu-
tions to the magnetic damping are likely to dominate in
strongly textured magnetic systems.
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